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Abstract—Heat transfer during condensation of a flowing vapour on an isothermal plate of arbitrary

inclination is investigated analytically. The analysis is based on a previously reported perturbation solution

of the film stability problem. A closed form expression is obtained for the dimensionless average heat

transfer coefficient which is compared with available solutions valid for the special cases of condensation
on horizontal and vertical surfaces.

INTRODUCTION

Heat TRANSFER during forced flow vapour con-
densation of a saturated vapour on isothermal sur-
faces has been the subject of numerous previous
articles. To the best knowledge of the author, there
is no prediction available in the literature regarding
average heat transfer coefficients for forced vapour
condensation on isothermal flat surfaces of arbitrary
inclination. The present study is based on a per-
turbation analysis and leads to a closed form
expression for the average heat transfer coefficient.
Among the many previous works for the prediction
of local heat transfer coefficients on a vertical surface
are those reported in refs. [1-3]. Thermal convection
terms in the energy equation and acceleration terms
in the momentum equation of the condensate film
were neglected in refs. [1,2]. Denny and Mills [3}
accounted for the convection and acceleration effects
by means of a numerical analysis. They reported
results in dimensional form and only for three differ-
ent values of the vapour velocity. Result reported in
all three studies are further restricted to local values
of the heat transfer coefficient. The purpose of the
present investigation is the presentation of a dimen-
sionless closed form formula for the average heat
transfer coefficient which may be readily used in many
different practical situations, i.e. for many different
values of the dimensionless parameters of the physical
process.

ANALYSIS

A first-order perturbation solution for forced va-
pour flow condensation on inclined isothermal surfaces
was previously reported in ref. [4]. The temperature
distribution in the condensate film is given by ref. [4]
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Equation (1), being valid for a wavy condensate film,
is also applicable for a steady condensate film. The
steady-state condensate film thickness is governed
by the following non-linear ordinary differential
equation [4]:
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Coefficients ko—k,; were reported in ref. [4]. Terms
of O(g”) in equation (4) represent the effect of finite
amplitude wave motion on the condensate film and
this term will vanish for a steady film. Additionally,
terms multiplied by negligibly small coefficients &, k,
and k, will be neglected. The characteristic length in
equation (4) is the wavelength, A, which does not fit
in with the physics of a steady condensate film. The
following transformations will be introduced into
equation (4) in order to change the characteristic
dimension from wavelength to (2v?/g)"/® which is the
proper characteristic dimension for a steady film

A = k7 Uk ®)
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Substitution of equations (5) and (6) into equation
(4) and taking & = k5 = ky = k,, = 0 in equation (4)
yields

1-2AA,—2A = F[—s5,(5A%A2 +2A%A)
+52(AA, +A7[2)+5:BAA; +2A°A )]+ O(F?)
M

1613



1614 M. Unsac
NOMENCLATURE
¢ liquid specific heat ¥ odp
F acceleration effect parameter, c,AT/hy, Pr A defined in equation (5)
F Pr  heat capacity parameter, c,AT/hy, Ay, defined in equation (25)
Fr  Froude number, v?/nL H small parameter
g gravitational acceleration 7 film thickness
h heat transfer coefficient fio local film thickness at downstream end
i average heat transfer coefficient of plate
hg, enthalpy of phase change 7] dimenstonless steady flow film thickness
k liquid conductivity # dimensionless unsteady film thickness
£ length of plate ¢ dimensionless temperature
L Liavigy? i wavelength
M u,lu u, i, liquid, vapour viscosity
n 2cos ¢ v liquid kinematic viscosity
Pr Prandtl number & defined in equation (6)
R giie/2v? & defined in equation (24)
f,¢  time, dimensionless time P, p, liquid, vapour density
TT.T, liquid, vapour, interface ¢ angle of plate with vertical.
temperature
AT  T.-T, Subscripts
u U0/ (gvj2)'7 & ¥, x partial differentiation with respect to
U,  characteristic velocity, gi3/2v the subscript.
U, vapour -component velocity
U U,/ U,y Dimensionless terms
(% 7), (x, ») dimensional, dimensionless, 8 (F-TH)/(T.~T.)
Cartesian coordinates. y Plis
7 ??/_'Zn
Greek symbols t ol of
o wave number, 277,/ x aX/f,.
where S5 = {8; +55—35,/2)/8. (16)
5y = 4k, s/Rk3 (8)  The heat transfer coefficient is determined from
83 = 8k3/Rk; ©) h=—kTy)(F,—T) aty=0 an
$3 = —4kio/Rkzks. (19) and its average value from
The following expansion will be utilized to find a first- B
order asymptotic solution of equation (7): h= !N j - hdi. (18)
A= Ao+ FA, +O(F) (1) L Jo
subject to the initial condition Equations (1)-(3) with equations (5), {6) and' {an
result in the following expression for the dimen-
A(0) = 0. (12)  gionless local heat transfer coefficient :

Substituting equation (11) into equations (7) and (12},
and equating like powers of F, one obtains the zeroth-
order and the first-order problems which may be
solved in succession to yield
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(hik)(2v*[g) ' (sufk )
= A"V L F(2b (afk )A A,
+2b,(afk DA™ PAH+OFD  (19)
where
by = n(8+3F)Pr/80(1 + F)
b, = FPr24(1+F).
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Finally, from equations (19) and (18), the dimen-

sionless average heat transfer coefficient is obtained
as
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Equation (22) is valid for a plate of arbitrary incli-
nation. For a horizontal surface (¢ = 90°, —90°),
n = 2cos ¢ vanishes and equation (22) simplifies to

(A12Kk)(Lv|U,0)? = (ks/20F) "
X [1+ F(abs ks +55/16)+ O(F*)].

For condensation of a quiescent vapour (U, = 0) on
an inclined surface, equation (22) simplifies to

(3h)4k)(2v2 k) P (AFLIn) " = (ko foum) '
x [1+ F(ab, [k, — 35,/16) + O(F?)).

(26)
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DISCUSSION

Equation (22) gives the dimensionless average heat
transfer coefficient for forced vapour flow con-
densation on an isothermal inclined surface and is
depicted in Figs. 1-5 for five different Prandtl
numbers. The lowest curves in Figs. 1-5 corre-
sponding to Fr = 0 is for condensation of a quiescent
vapour. Numerical solution of the full boundary
layer equations for Fr =0 was reported in ref. [5].
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Fi1G. 1. Dimensionless average heat transfer coefficient for a
vertical surface (n = 2) when Pr = 100.
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FiG. 2. Dimensionless average heat transfer coefficient for a
vertical surface (n = 2) when Pr = 10.
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Fi1G. 3. Dimensionless average heat transfer coefficient for a
vertical surface (n = 2) when Pr=1.
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FiG. 4. Dimensionless average heat transfer coefficient for a
vertical surface (n = 2) when Pr = 0.03.
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F1G. 5. Dimensionless average heat transfer coeflicient for a
vertical surface (n = 2) when Pr = 0.003.

Figures 2 and 3 of ref. [5] for Pr = 100, 10, 1, 0.03,
and 0.003 are in complete agreement with the curves
corresponding to Fr = 0 in Figs. 1-5 of the present
study. This validates the applicability of equation (22)
in the small Froude number limit. The present analysis
which is a follow up to the analysis reported in ref. [4]
is based on a generalized version of the ‘asymptotic
shear stress’ interfacial boundary condition (equation
(28) of ref. [4]). It is concluded, therefore, that the
‘asymptotic shear stress’ interfacial condition is a valid
approximation at small Froude numbers. Equation
(22) being valid for small Froude numbers should be
expected to be valid for all Froude numbers if its
validity can be demonstrated for Fr = 0. In this limit,
equation (22) simplifies into equation (26) which is
also valid for forced vapour flow condensation on a
horizontal surface. This problem has been previously
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FiG. 6. Comparison of equation (26) with the results of
Koh [6] (n = 0, ¢ = 90°).

Fic. 7. Comparison of equation (26) with the results of
Koh [6] (n = 0, ¢ = 90°).

solved by Koh [6] considering the full vapour thermal
boundary layer equation. Equation (26) is compared
with the results of Koh [6] in Figs. 6--8. It is seen from
these figures that agreement with Koh’s results are
good at small Prandtl numbers and worse at large
Prandtl numbers. It is thus concluded that equation
(26) is valid at the asymptotic limit when yM = 0. It
has been previously mentioned in ref. [7] that analyses
of forced vapour flow condensation based on the
‘asymptotic shear stress’ boundary condition is gen-
erally valid for (yM)"?/F < 2 and the present results
are in agreement with this observation. The present
analysis is a first-order perturbation solution with
respect to the acceleration effect parameter, F, and
applicability of equations (22), (26), and (27) is further
limited to values of F < 1.
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FiG. 8. Comparison of equation (26) with the results of
Koh {6] (n = 0, ¢ = 90°).
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UNE SOLUTION ANALYTIQUE DU COEFFICIENT DE TRANSFERT MOYEN DE
CHALEUR POUR L’ECOULEMENT FORCE DE VAPEUR AVEC
CONDENSATION SUR DES SURFACES INCLINEES

Résumé—On étudie analytiquement le transfert thermique pendant la condensation d’une vapeur s’écoulant

sur une plaque isotherme inclinée. L’analyse est basée sur une solution de perturbation déja publiée pour

un probléme de stabilité de film. Une expression est obtenue pour le coefficient sans dimension de transfert

de chaleur moyen et il est comparé avec d’autres solutions valables pour les cas particuliers de condensation
sur des surfaces horizontales ou verticales.

) EINE GESCHLOSSENE LOSUNG FUR DEN MITTLEREN
WARMEUBERGANGSKOEFFIZIENTEN BEI DER KONDENSATION EINER
ERZWUNGENEN DAMPFSTROMUNG AN GENEIGTEN OBERFLACHEN

Zusammenfassang—Betrachtet wird der Wérmetransport wihrend der Kondensation eines strdmenden
Dampfes an einer isothermen Platte mit beliebigem Neigungswinkel. Die Untersuchung basiert dabei
auf einer bereits vorgesteliten Losung des Filmstabilitdtsproblems. Fiir den dimensionslosen mittleren
Wirmeiibergangskoeffizienten wird eine Gleichung in geschlossener Form vorgestellt, welche mit den
bekannten Lsungen fiir die Kondensation an horizontalen und vertikalen Flichen verglichen wird.

SAMKHYTOE PEIIEHME U1 CPEOHEIO KOS®®UIIMEHTA TEIUJIOTIEPEHOCA ITPU
BbIHYXIEHHON KOHAEHCALIMH ITOTOKA ITAPA HA HAKJIOHHBIX
NOBEPXHOCTAX

AHBOTAUES—AHAJTHTHYECKH HCCJIERYETCS TEIUIONEPEHOC MPH KOHACHCAIMH MOTOKA Napa Ha M30TepMH-

4ecKOl MNACTHHe ¢ NMPOM3BOJNLHBIM YIJIOM HAKJIOHA. AHA/IM3 OCHOBBIBACTCA HA MOJIYYEHHOM paHee

PEILCHHH METOJOM BO3MYILEHHS 3a024H YCTOHWYABOCTH MJCHKH. PellieHne MpeACTaBNIEHO B 3aMKHYTOM

BHfe mns Gespasmephoro cpeaHero kodbHuHEHTa TEMIONEPEHOCA W JAHO €r0 CPABHEHHE C HMEIOIIH-

MHCA PEILEHAAMH, KOTOpBIE ABIAIOTCA CTIPaBEVIHBLIME B OCOGBIX C/Iydasx KOHAEHCAIMH HA TOPH3OHTA-
JIHBIX M BEPTHKAJIBHBIX HOBEPXHOCTAX.



